Lecture Notes, October 28, 2010

The Arrow-Debreu Model of General Competitive Equilibrium

The Market, Commodities and Prices

N commodities

 $x=(x_1,\,x_2,\,x_3,\,...,\,x_N)\in {I\!\!R}^N$, a commodity bundle

The market takes place at a single instant, prior to the rest of economic activity. **commodity** = good or service completely specified

description location date (of delivery)

A futures market: no reopening of trade.

Price system : $p = (p_1, p_2, ..., p_N) \neq 0$. $p_i \ge 0$ for all i = 1, ..., N. Value of a bundle $x \in \mathbb{R}^N$ at prices p is p•x.

Firms and Production Technology

F, $j \in F$, j = 1, ..., #F. Production technology: $\mathcal{Y}^j \subset \mathbb{R}^N$. $y \in \mathcal{Y}^j$ (the script Y notation is to emphasize that \mathcal{Y}^j is bounded). Negative co-ordinates of y are inputs; positive co-ordinates are outputs. $y \in \mathcal{Y}^j$, y = (-2, -3, 0, 0, 1)

This is a more general specification than a production function. The relationship is $f^{j}(x) \equiv \max \{ w \mid (-x, w) \in \mathcal{Y}^{j} \}.$

The Form of Production Technology

P.II.	$0 \in \mathcal{Y}^{j}$.
P.III.	\mathcal{Y}^{j} is closed. (continuity)

October 28, 2010

Economics 200B UCSD

P.VI \mathcal{Y}^{j} is a bounded set for each $j \in F$. (We'll dispense with this evenutally)

P.III and P.VI $\Rightarrow \mathcal{Y}^{j}$ is compact

Compactness of \mathcal{Y}^{j} is needed to be sure that profit maximization is well-defined, but P.VI is an ugly assumption: boundedness of a firm's attainable production possibilities should be communicated by the price system --- not by assumption. Chapter 15 of Starr's book weakens the assumption by showing that --- even when the firm's technology set is unbounded --- under weak assumptions, the set of attainable plans is bounded. Then circumscribe the unbounded technology set by a ball strictly containing the attainable plans. Apply the analysis of chaps. 11 - 14 to the artificially circumscribed production technology --- there will be an equilibrium (theorem 14.1) and an equilibrium is necessarily attainable, so the circumscibing ball is not a binding constraint in equilibrium. Then delete the artificial circumscribing ball; the prices and allocation remain an equilibrium. Conclusion: P.VI can be eliminated but it's a complex pain to do so.

Strictly Convex Production Technology

P.V. For each
$$j \in F$$
, \mathcal{Y}^{j} is strictly convex.

Convexity implies no scale economies, no indivisibilities.

$$p \in R^{N}_{+}$$
, $p = (p_1, p_2, ..., p_N), p \neq 0.$

$$\widetilde{S}^{j}(p) \equiv \{ y^{*j} \mid y^{*j} \in \mathcal{Y}^{j}, \quad p \cdot y^{*j} \ge p \cdot y \text{ for all } y \in \mathcal{Y}^{j} \}.$$

Theorem 11.1: Assume P.II, P.III, P.V, and P.VI. Let $p \in R^N_+, p \neq 0$. Then $\widetilde{S}^j(p)$ is a well defined continuous point-valued function.

Proof:

Well defined: $\tilde{S}^{j}(p) =$ maximizer of a continuous real-valued function on a compact set. <u>Point-valued</u>: Strict convexity of \mathcal{Y}^{j} , P.V. Point valued-ness implies that $\tilde{S}^{j}(p)$ is a function. <u>Continuity</u>: Let $p^{\nu} \in \mathbb{R}^{N}_{+}$; $\nu = 1, 2, ...; p^{\nu} \neq 0$, $p^{\nu} \rightarrow p^{o} \neq 0$. Show $\tilde{S}^{j}(p^{\nu}) \rightarrow \tilde{S}^{j}(p^{o})$.

October 28, 2010

Economics 200B UCSD

Note: this is a consequence of the Maximum Theorem (see Berge, *Topological Spaces*), but we can provide a direct proof here, by contradiction. Suppose not. Then there is a cluster point of the sequence $\tilde{S}^{j}(p^{\nu})$, y* so that $y^{*} \neq \tilde{S}(p^{o})$ and $p^{\circ} \cdot \tilde{S}^{j}(p^{o}) > p^{\circ} \cdot y^{*}$ (why does this inequality hold? by definition of $\tilde{S}^{j}(p^{o})$). That is there is a subsequence p^{ν} so that $\tilde{S}^{j}(p^{\nu}) \rightarrow y^{*}$. Note that $p^{\nu} \cdot \tilde{S}^{j}(p^{o}) \rightarrow p^{\circ} \cdot \tilde{S}^{j}(p^{o})$. We have $p^{\nu} \cdot \tilde{S}^{j}(p^{\nu}) \rightarrow p^{\circ} \cdot y^{*}$ and $p^{\circ} \cdot \tilde{S}^{j}(p^{o}) > p^{\circ} \cdot y^{*}$. But the dot product is a continuous function of its arguments, so for ν large, $p^{\nu} \cdot \tilde{S}^{j}(p^{o}) > p^{\nu} \cdot \tilde{S}^{j}(p^{\nu})$, a contradiction. Hence $\tilde{S}^{j}(p^{\nu}) \rightarrow \tilde{S}^{j}(p^{o})$.

Lemma 1: (homogeneity of degree 0) Assume P.II, P.III, and P.VI. Let $\lambda > 0$, $p \in R^N_+$. Then $\tilde{S}^j(\lambda p) = \tilde{S}^j(p)$.

 $\widetilde{S}(p) \equiv \sum_{j \in F} \widetilde{S}^{j}(p)$

4.4 Attainable Production Plans

Definition: A sum of sets \mathcal{Y}^{j} in \mathbb{R}^{N} , is defined as $\mathcal{Y} = \sum_{j} \mathcal{Y}^{j}$ is the set $\{y \mid y = \sum_{j} y^{j} \text{ for some } y^{j} \in \mathcal{Y}^{j} \}$. <u>Aggregate technology</u> set: $\mathcal{Y} = \sum_{j \in F} \mathcal{Y}^{j}$. Initial inputs to production $\mathbf{r} \in \mathbb{R}^{N}_{+}$

Definition: Let $y \in \mathcal{Y}$. Then y is said to be <u>attainable</u> if $y + r \ge 0$.

 $y \in \mathcal{Y}$ is attainable if $(y+r) \in [\mathcal{Y} + \{r\}] \cap \mathbb{R}^{\mathbb{N}}_{+}$.

Note that under this definition, and P.II, P.III, P.V, P.VI the attainable set of outputs is compact and convex.