Lecture Notes, October 28, 2010

The Arrow-Debreu Model of General Competitive Equilibrium

The Market, Commodities and Prices

N commodities
$\mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{\mathrm{N}}\right) \in \mathbf{R}^{\mathrm{N}}$, a commodity bundle
The market takes place at a single instant, prior to the rest of economic activity. commodity = good or service completely specified description location date (of delivery)

A futures market: no reopening of trade.
Price system : $p=\left(p_{1}, p_{2}, \ldots, p_{N}\right) \neq 0$.
$p_{i} \geq 0$ for all $i=1, \ldots, N$.
Value of a bundle $x \in R^{N}$ at prices p is $p \cdot x$.

Firms and Production Technology

$$
F, \quad j \in F, j=1, \ldots, \# F
$$

Production technology: $\boldsymbol{Y}^{\mathrm{j}} \subset \mathrm{R}^{\mathrm{N}} . \boldsymbol{y} \in \boldsymbol{Y}^{\mathrm{j}}$ (the script Y notation is to emphasize that \mathscr{Y}^{j} is bounded).
Negative co-ordinates of y are inputs; positive co-ordinates are outputs.
$\mathrm{y} \in \mathrm{Y}^{\mathrm{j}}, y=(-2,-3,0,0,1)$
This is a more general specification than a production function. The relationship is $f^{j}(x) \equiv \max \left\{w \mid(-x, w) \in Y^{j}\right\}$.

The Form of Production Technology

$$
\begin{array}{cl}
\text { P.II. } & 0 \in \mathcal{Y}^{\mathrm{j}} . \\
\text { P.III. } & \mathcal{Y}^{\mathrm{j}} \text { is closed. (continuity) }
\end{array}
$$

P.VI $\quad \mathcal{Y}^{j}$ is a bounded set for each $j \in F$. (We'll dispense with this evenutally)
P.III and P.VI $\Rightarrow \mathcal{Y}^{j}$ is compact

Compactness of \mathscr{Y}^{j} is needed to be sure that profit maximization is well-defined, but P.VI is an ugly assumption: boundedness of a firm's attainable production possibilities should be communicated by the price system --- not by assumption. Chapter 15 of Starr's book weakens the assumption by showing that --- even when the firm's technology set is unbounded --- under weak assumptions, the set of attainable plans is bounded. Then circumscribe the unbounded technology set by a ball strictly containing the attainable plans. Apply the analysis of chaps. 11-14 to the artificially circumscribed production technology --- there will be an equilibrium (theorem 14.1) and an equilibrium is necessarily attainable, so the circumscibing ball is not a binding constraint in equilibrium. Then delete the artificial circumscribing ball; the prices and allocation remain an equilibrium. Conclusion: P.VI can be eliminated but it's a complex pain to do so.

Strictly Convex Production Technology

P.V. For each $j \in \mathrm{~F}, \mathrm{Y}^{\mathrm{j}}$ is strictly convex.

Convexity implies no scale economies, no indivisibilities.

$$
\mathrm{p} \in R_{+}^{N}, \mathrm{p}=\left(\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{N}}\right), \mathrm{p} \neq 0
$$

$$
\widetilde{S}^{j}(p) \equiv\left\{y^{* j} \mid y^{* j} \in \mathcal{Y}^{j}, \quad p \cdot y^{* j} \geq p \cdot y \text { for all } \quad \mathrm{y} \in \mathcal{Y}^{\mathrm{j}}\right\} .
$$

Theorem 11.1: Assume P.II, P.III, P.V, and P.VI. Let $p \in R_{+}^{N}, p \neq 0$. Then $\widetilde{S}^{j}(p)$ is a well defined continuous point-valued function.

Proof:

Well defined: $\tilde{S}^{j}(p)=$ maximizer of a continuous real-valued function on a compact set.
Point-valued: Strict convexity of \mathcal{Y}^{j}, P.V. Point valued-ness implies that $\widetilde{S}^{j}(p)$ is a function.
Continuity: Let $p^{v} \in R_{+}^{N} ; v=1,2, \ldots ; p^{v} \neq 0, p^{v} \rightarrow p^{o} \neq 0$. Show $\widetilde{S}^{j}\left(p^{v}\right) \rightarrow \widetilde{S}^{j}\left(p^{o}\right)$.

Note: this is a consequence of the Maximum Theorem (see Berge, Topological Spaces), but we can provide a direct proof here, by contradiction. Suppose not. Then there is a cluster point of the sequence $\widetilde{S}^{j}\left(p^{v}\right)$, y^{*} so that $\mathrm{y}^{*} \neq \widetilde{S}\left(p^{o}\right)$ and $p^{0} \cdot \widetilde{S}^{j}\left(p^{o}\right)>p^{0} \cdot y^{*}$ (why does this inequality hold? by definition of $\left.\widetilde{S}^{j}\left(p^{o}\right)\right)$. That is there is a subsequence p^{v} so that $\widetilde{S}^{j}\left(p^{v}\right) \rightarrow y^{*}$. Note that $p^{v} \cdot \widetilde{S}^{j}\left(p^{o}\right) \rightarrow p^{o} \cdot \widetilde{S}^{j}\left(p^{o}\right)$. We have $p^{v} \cdot \widetilde{S}^{j}\left(p^{v}\right) \rightarrow p^{o} \cdot y^{*}$ and $p^{o} \cdot \widetilde{S}^{j}\left(p^{o}\right)>p^{o} \cdot y^{*}$. But the dot product is a continuous function of its arguments, so for v large, $p^{v} \cdot \widetilde{S}^{j}\left(p^{o}\right)>p^{v} \cdot \widetilde{S}^{j}\left(p^{v}\right)$, a contradiction. Hence $\widetilde{S}^{j}\left(p^{v}\right) \rightarrow \widetilde{S}^{j}\left(p^{o}\right)$. Q.E.D.

Lemma 1: (homogeneity of degree 0) Assume P.II, P.III, and P.VI. Let $\lambda>0, p \in R_{+}^{N}$. Then $\widetilde{S}^{\mathrm{j}}(\lambda \mathrm{p})=\widetilde{S}^{\mathrm{j}}(\mathrm{p})$.
$\widetilde{S}(p) \equiv \sum_{j \in F} \widetilde{S}^{j}(p)$

4.4 Attainable Production Plans

Definition: A sum of sets \mathcal{Y}^{j} in R^{N}, is defined as $\mathcal{Y}=\sum_{j} \mathcal{Y}^{\mathrm{j}}$ is the set $\left\{y \mid y=\sum_{j} y^{j}\right.$ for some $\left.y^{j} \in \mathcal{Y}^{j}\right\}$.
Aggregate technology set:

$$
\mathcal{Y} \equiv \sum_{j \in F} y^{j}
$$

Initial inputs to production $r \in \mathrm{R}^{\mathrm{N}}{ }_{+}$
Definition: Let $y \in \mathcal{Y}$. Then y is said to be attainable if $y+r \geq 0$.

$$
y \in \mathcal{Y} \text { is attainable if }(y+r) \in[\mathcal{Y}+\{r\}] \cap R_{+}^{N} .
$$

Note that under this definition, and P.II, P.III, P.V, P.VI the attainable set of outputs is compact and convex.

